
Mathematical Analysis
& Convex Optimization

Vol. 1 (2020), No. 1, 75–91
https:\\ maco.lu.ac.ir
DOI: 10.29252/maco.1.1.9

Research Paper

GENERAL VISCOSITY ITERATIVE PROCESS FOR SOLVING
VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS
INVOLVING MULTIVALUED QUASI-NONEXPANSIVE AND
DEMICONTRACTIVE OPERATORS WITH APPLICATION

THIERNO MOHAMADANE MANSOUR SOW

Abstract. In this paper, we introduce and study a new iterative method which is based
on viscosity general algorithm and forward-backward splitting method for finding a com-
mon element of the set of common fixed points of multivalued demicontractive and quasi-
nonexpansive mappings and the set of solutions of variational inclusion with set-valued max-
imal monotone mapping and inverse strongly monotone mappings in real Hilbert spaces. We
prove that the sequence {xn} which is generated by the proposed iterative algorithm con-
verges strongly to a common element of two sets above. Finally, our theorems are applied
to approximate a common solution of fixed point problems with set-valued operators and
the composite convex minimization problem. Our theorems are significant improvements on
several important recent results.
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1. Introduction

Throughout this paper, we assume that H be a real Hilbert space with the inner product
⟨·, ·⟩ and norm ∥.∥ and C be a nonempty closed convex subset of H. An operator A : H → H
is said to be Lipschitz if there exists an L ≥ 0 such that

(1.1) ∥Ax−Ay∥ ≤ L∥x− y∥, ∀ x ∈ H.

A : H → H is said to be strongly positive if there exists a constant k > 0 such that

⟨Ax, x⟩ ≥ k∥x∥2, ∀ x ∈ H.

A is called k-strongly monotone if there exists k ∈ (0, 1) such that for each x, y ∈ H such
that

⟨Ax−Ay, x− y⟩H ≥ k∥x− y∥2.

Remark 1.1. From the defintion of A, we note that strongly positive bounded linear operator
A is a ∥A∥-Lipschitzian and k- strongly monotone operator.
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An operator A : H → H is said α-inverse strongly monotone if there exists a constant
α > 0 such that

⟨Ax−Ay, x− y⟩H ≥ α∥Ax−Ay∥2, ∀ x, y ∈ H.

It is immediate that if A is α- inverse strongly monotone, then A is monotone and Lipschitz
continuous.
Let A : D(A) ⊂ H → 2H be a multivalued operators. Recall that that A is called monotone
if ⟨u− v, x− y⟩ ≥ 0, (x, u), (y, v) ∈ G(A), where

G(A) = {(x, u) : x ∈ D(A), u ∈ Ax}.
A monotone mapping A : H → 2H is said to be maximal if its graph G(A) is not properly
contained in the graph of any other monotone mapping.

Let A : H → H be a single-valued nonlinear mapping and M : H → 2H be a set-valued
mapping. The variational inclusion problem is as follows: Find x ∈ H such that
(1.2) θ ∈ M(x) +A(x),

where θ is the zero vector in H. We denote the set of solution of this problem by S(M,A). If
A = θ then problem (1.2) becomes the inclusion problem introduced by Rockafellar [24]. It is
known that (1.2) provides a convenient framework for the unified study of optimal solutions
in many optimization related areas including mathematical programming, complementarity,
variational inequalities, optimal control, mathematical economics, equilibria, game theory,
signal processing and machine learning. Also various types of variational inclusions problems
have been extended and generalized (see [1] and the references therein).
A popular method for solving problem (1.2) is the well-known forward-backward splitting
method introduced by Passty [21] and Lions and Mercier [13].The method is formulated as
(1.3) xn+1 = (I − λnM)−1(I − λnA)xn, λn > 0,

under the condition that Dom(M) ⊂ Dom(A). It was shown, see for example [6], that weak
convergence of (1.3) requires quite restrictive assumptions on A and M, such that the inverse
of A is strongly monotone or M is Lipschitz continuous and monotone and the operator A+M
is strongly monotone on Dom(B). Tseng in [27] and Gibali and Thong in [29] extended and
improved results of G.H-G.Chen and R.T. Rockafellar [6].

Let (X, d) be a metric space, K be a nonempty subset of X and T : K → 2K be a multivalued
mapping. An element x ∈ K is called a fixed point of T if x ∈ Tx. The fixed point set of T
is denoted by Fix(T ) := {x ∈ D(T ) : x ∈ Tx}where D(T ) := {x ∈ X : Tx ̸= ∅}. It is easy
to see that single-valued mapping is a particular case of multivalued mapping.

The theory of set-valued mappings has applications in control theory, convex optimiza-
tion, differential equations and economics. Fixed point theory for set-valued mappings has
been studied by many authors, (see, for example, Brouwer [4], Kakutani [11], Nash [18, 19],
Geanakoplos [9], Sow et al. [26]).

Interest in the study of fixed point theory for multi-valued nonlinear mappings stems, per-
haps, mainly from its usefulness in real-world applications such as Game Theory and Market
Economy and in other areas of mathematics, such as in Non-Smooth Differential Equations
and Differential Inclusions, Optimization theory. We describe briefly the connection of fixed
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point theory for multi-valued mappings with these applications.

Optimization problems with constraints. Let f : H → R∪{+∞} be a proper convex
lower semicontinuous function and φ : H → 2H be a multivalued mapping. Consider the
following optimization problem:

(P )

 min f(x)

0 ∈ φ(x).

It is known that the multivalued map, ∂f the subdifferential of f, is maximal monotone (see,
e.g., [16]), where for x,w ∈ H,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩, ∀ y ∈ H

⇔ x ∈ argmin(f − ⟨·, w⟩).
It is easily seen that, for x ∈ H with 0 ∈ φ(x), x is a solution of (P ) if and only if 0 ∈
φ(x) ∩ ∂f(x) or equivalently

x ∈ T1x ∩ T2x,

with T1 := I−∂f and T2 := I−φ, where I where I is the identity map of H. Therefore, x is a
solution of (P ) if and only if x is a common fixed point of the multivalued mappings T1 and T2.

Let D be a nonempty subset of a normed linear space E. The set D is called proximinal (see,
e.g., [20]) if for each x ∈ E, there exists u ∈ D such that

d(x, u) = inf{∥x− y∥ : y ∈ D} = d(x,D),

where d(x, y) = ∥x− y∥ for all x, y ∈ E. Every nonempty, closed and convex subset of a real
Hilbert space is proximinal. Let CB(D), K(D) and P (D) denote the family of nonempty
closed bounded subsets, nonempty compact subsets, and nonempty proximinal bounded sub-
sets of D respectively. The Hausdorff metric on CB(D) is defined by:

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(D). A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L-
Lipschitzian if there exists L > 0 such that
(1.4) H(Tx, Ty) ≤ L∥x− y∥ ∀x, y ∈ D(T ).

When L ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if L = 1.
A multivalued map T is called quasi-nonexpansive if

H(Tx, Tp) ≤ ∥x− p∥
holds for all x ∈ D(T ) and p ∈ Fix(T ). In 2013, Chidume et al. [8] introduced the following
important class of multi-valued strictly pseudo-contractive mappings in real Hilbert spaces
which is more general than the class of multi-valued nonexpansive mappings.

Definition 1.2. [8] A multi-valued mapping T : D(T ) ⊆ H → CB(H) is said to be k-strictly
pseudo-contractive, if there exists k ∈ (0, 1) such for all x, y ∈ D(T ), we have

(1.5)
(
H(Tx, Ty)

)2
≤ ∥x− y∥2 + k∥(x− u)− (y − v)∥2 ∀u ∈ Tx, v ∈ Ty.
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If k = 1 in (1.6), the map T is said to be pseudo-contractive.

Motivated by approximating fixed point of multivalued mappings, Hicks and Kubicek [23]
introduced the following important class of multivalued demicontractive mappings in real
Hilbert spaces which are more general than the class of multivalued quasi-nonexpansive map-
pings and are also related to the multivalued k-strictly pseudo-contractive-type.

Definition 1.3. [23] Let X be a real normed space. A multivalued mapping T : D(T ) ⊆
X → 2X is said to be demicontractive if Fix(T ) ̸= ∅ and for all p ∈ Fix(T ), x ∈ D(T ) there
exists k ∈ [0, 1) such that

(1.6)
(
H(Tx, Tp)

)2
≤ ∥x− p∥2 + kd(x, Tx)2.

If k = 1 in (1.6), the map T is said to be hemicontractive.

Remark 1.4. It is easily seen that any multivalued nonexpansive and quasi-nonexpansive
mapping are k-demicontractive for any k ∈ [0, 1). Moreover the inverse is not true (see, for
example Isiogugu and Osilike [22]).

Let T : H → P (H) be a multivalued map and PT : H → CB(H) be defined by

PT (x) := {y ∈ Tx : ∥y − x∥ = d(x, Tx)}.

Next is an example of a multivalued mapping T with Fix(T ) ̸= ∅, Tp = {p} for all p ∈ Tp
which PT is a demicontractive-type but not a k-strictly pseudocontractive-type mapping.

Example 1.5. Let X = R (the reals with usual metric). Define T : [−1, 1] → 2[−1,1] by

Tx =



[−1,
2

3
x sin

1

x
], x ∈ (0, 1],

{0}, x = 0,[
2

3
x sin

1

x
, 1

]
, x ∈ [−1, 0).

(1.7)

Then, clearly Fix(T ) = {0}. For each x ∈ [−1, 1],

PTx =


{2
3
x sin

1

x
}, x ̸= 0,

{0}, x = 0,
(1.8)

which is demicontractive-type but not k-strictly pseudocontractive-type (see for example [23]).

Recently, viscosity iterative algorithms for finding a common element of the set of fixed
points for single-valued nonexpansive mappings and the set of solutions of variational inequal-
ity problems have been investigated by many authors; (see, e.g., [15, 7] and the references
therein). For example, Moudafi [15] introduced the explicit viscosity approximation method
for nonexpansive mappings.
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Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let f : C → C
be a contraction mapping and T be a single-valued nonexpansive mapping on C. Let {xn} be
a sequence defined by {

x0 ∈ C,
xn+1 = αnf(xn) + (1− αn)Txn,

(1.9)

where {αn} is a sequence in (0, 1). Then, the sequence {xn} generated by (1.9) converges
strongly to x∗ ∈ Fix(T ), which is a unique solution of the following variational inequality:

⟨x∗ − f(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Fix(T ).

On other hand, iterative methods for single-valued nonexpansive mappings have been applied
to solve fixed points problems and variational inequality problems in Hilbert spaces, see,
e.g.,[28, 14] and the references therein. For example, Moudafi [15] introduced the explicit
viscosity approximation method for nonexpansive mappings. A typical problem is to minimize
a quadratic function over the set of the fixed points of a nonexpansive mapping on a real
Hilbert space H:

(1.10) min
x∈Fix(T )

1

2
⟨Ax, x⟩ − ⟨b, x⟩.

In [28], Xu proved that the sequence {xn} defined by iterative method below with initial guess
x0 ∈ H chosen arbitrary:
(1.11) xn+1 = αnb+ (I − αnA)Txn, n ≥ 0,

converges strongly to the unique solution of the minimization problem (1.10), where T is a
nonexpansive mappings in H and A a strongly positive bounded linear operator. In 2006
Marino and Xu [14] extended Moudafi’s results [15] and Xu’s results [28] via the following
general iteration x0 ∈ H and
(1.12) xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0,

where{αn}n∈N ⊂ (0, 1), A is bounded linear operator on H and T is a nonexpansive. Under
suitable conditions, they proved the sequence {xn} defined by (1.12) converges strongly to
the fixed point of T, which is the unique solution of the following variational inequality

⟨Ax∗ − γf(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Fix(T ).

Motivated and inspired by the ongoing results in this field, we introduce a new iterative
algorithm and prove a strong convergence theorem for variational inclusion problem (1.2)
and the fixed point problem involving multivalued demicontractive and quasi-nonexpansive
mappings in Hilbert spaces without any compactness assumption. Finally, we apply our
convergence results to approximate a common solution of fixed point problems with set-valued
operators and the composite convex minimization problems.

2. Preliminaries

In this section, we define some concepts and state few basic results that we will use in
sequel. Recall that the nearest projection PC from H to C assigns to each x ∈ H, the unique
point PCx ∈ C satisfying the property

∥x− PCx∥ ≤ ∥y − x∥
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for all y ∈ C, which is equivalent to the following inequality

(2.1) ⟨x− PCx, PCx− y⟩ ≥ 0, ∀y ∈ C.

Let a set valued mapping M : H → 2H be a maximal monotone. We define a resolvent
operator JM

λ generated by M and λ as follows:

JM
λ = (I + λM)−1(x) ∀x ∈ H,

where λ is a positive number. It is easily to see that the resolvent operator JM
λ is single-valued,

nonexpansive and 1-inverse strongly monotone and moreover, a solution of the problem 1.2
is a fixed point of the operator JM

λ (I − λA) for all λ > 0 (see, for example, [12]).

Lemma 2.1. [13] Let M : H → 2H be a maximal monotone mapping and A : H → H be a
Lipschitz and continuous monotone mapping. Then the mapping M+A : H → 2H is maximal
monotone.

Lemma 2.2 ([7]). Let H be a real Hilbert space. Then for any x, y ∈ H, the following
inequalities hold:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − (1− λ)λ∥x− y∥2, λ ∈ (0, 1).

Definition 2.3. Let H be a real Hilbert space and T : D(T ) ⊂ H → 2H be a multivalued
mapping. I−T is said to be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn}
converges weakly to p and d(xn, Txn) converges to zero, then p ∈ Tp.

Lemma 2.4 (Demiclosedness Principle, [4]). Let H be a real Hilbert space, K be a nonempty
closed and convex subset of H. Let T : K → CB(K) be a multivalued nonexpansive mapping
with convex-values. Then I − T is demi-closed at zero.

Lemma 2.5 ( [29]). Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − αn)an + αnσn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a
sequence in R such that

(a)
∞∑
n=0

αn = ∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| < ∞. Then lim
n→∞

an = 0.

Lemma 2.6. [30] Let H be a real Hilbert space and A : H → H be a k-strongly monotone and
L-Lipschitzian operator with k > 0, L > 0. Assume that 0 < η < 2k

L2 and τ = η
(
k − L2η

2

)
.

Then for each t ∈
(
0,min{1, 1

τ }
)
, we have

∥(I − tηA)x− (I − tηA)y∥ ≤ (1− tτ)∥x− y∥, ∀x, y ∈ H.

Lemma 2.7 (Song and Cho [25]). Let H be a real Hilbert space and T : H → P (H) be a
multi-valued map. Then the following are equivalent:
(i) x∗ ∈ Fix(T );
(ii) PT (x

∗) = {x∗};
(iii) x∗ ∈ Fix(PT ). Moreover, Fix(T ) = Fix(PT ).

Lemma 2.8. Let H be a real Hilbert space and A : H → H be an α-inverse strongly monotone
mapping. Then, I − θA is nonexpansive mapping for all x, y ∈ H and θ ∈ [0, 2α].
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Proof. For all x, y ∈ H, we have

∥(I − θA)x− (I − θA)y∥2 = ∥(x− y)− θ(Ax−Ay)∥2

= ∥x− y∥2 − 2θ⟨Ax−Ay, x− y⟩+ ∥Ax−Ay∥2

≤ ∥x− y∥2 + θ(θ − 2α)∥Ax−Ay∥2.

We obtain the desired result. □

3. Main results

In this section, we prove some strong convergence theorems for finding a common element
of the set of solution of a variational inclusion problems and the set of solution of fixed point
problems involving set-valued operators.

Theorem 3.1. Let H be a real Hilbert space and K be a nonempty, closed convex subset of
H. Let A : K → H be an α-inverse strongly monotone operator and let B : H → H be an k-
strongly monotone and L-Lipschitzian operator. Let f : K → H be an b-Lipschitzian mapping
and M : H → 2H be a maximal monotone mapping such that the domain of M is included in
K. Let T1 : K → CB(K) be a multivalued β-demicontractive mapping and T2 : K → CB(K)
be a multivalued quasi-nonexpansive mapping such that Γ := Fix(T1)∩Fix(T2)∩S(M,A) ̸= ∅
and T1p = T2p = {p} ∀p ∈ Γ. For given x0 ∈ K, let {xn} be generated by the algorithm:

zn = JM
λn
(I − λnA)xn,

yn = θnzn + (1− θn)vn, vn ∈ T1zn,

wn = βnyn + (1− βn)un, un ∈ T2yn,

xn+1 = PK(αnγf(xn) + (I − ηαnB)wn),

(3.1)

where {λn}, {βn}, {θn} and {αn} be sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

(ii) lim
n→∞

inf βn(1− βn) > 0, θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0.

Assume that 0 < η <
2k

L2
, 0 < γb < τ, where τ = η

(
k − L2η

2

)
and the mappings I − T1 and

I−T2 are demiclosed at origin. Then, the sequences {xn} and {zn} generated by (3.1) converge
strongly to x∗ ∈ Γ, which is the unique solution of the following variational inequality:

(3.2) ⟨ηBx∗ − γf(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Γ.

Proof. From the choice of η and γ, (ηB − γf) is strongly monotone, then the variational
inequality (3.2) has a unique solution in Γ. Below we use x∗ to denote the unique solution of
(3.2). Without loss of generality, we can assume αn ∈

(
0,min{1 ,

1

τ
}
)
. We prove that the

sequence {xn} is bounded. Let p ∈ Γ. Then from Lemma 2.8, we have

∥zn − p∥ = ∥JM
λn
(I − λnA)xn − p∥ ≤ ∥xn − p∥, ∀n ≥ 0.
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By using (3.1), Lemma 2.2, T1p = {p} and T1 is β-demicontractive, we have

∥yn − p∥2 =
∥∥∥θn(zn − p) + (1− θn)(vn − p)

∥∥∥2
= θn∥zn − p∥2 + (1− θn)∥vn − p∥2 − (1− θn)θn∥vn − zn∥2

≤ θn∥zn − p∥2 + (1− θn)H(T1zn, T1p)
2 − (1− θn)θn∥vn − zn∥2

≤ θn∥zn − p∥2 + (1− θn)
(
∥zn − p∥2 + βd(zn, T1zn)

2
)
− (1− θn)θn∥vn − zn∥2.

Hence,

(3.3) ∥yn − p∥ ≤ ∥zn − p∥2 − (1− θn)(θn − β)∥vn − zn∥2.

Since θn ∈]β, 1[, we obtain,

(3.4) ∥yn − p
∥∥∥ ≤ ∥zn − p

∥∥∥.
From (3.1) and fact that T2p = {p}, we have

∥wn − p∥ = ∥βnyn + (1− βn)un − p∥
≤ βn∥yn − p∥+ (1− βn)∥un − p∥
≤ βn∥yn − p∥+ (1− βn)H(T2yn, T2p)

≤ βn∥yn − p∥+ (1− βn)∥yn − p∥
≤ ∥yn − p∥.

Therefore

(3.5) ∥wn − p∥ ≤ ∥yn − p∥ ≤ ∥zn − p∥ ≤ ∥xn − p∥.

Hence, using Lemma 2.6, (3.1) and inequality (3.5), we have

∥xn+1 − p∥ ≤ ∥αnγf(xn) + (I − ηαnB)wn − p∥
≤ αnγ∥f(xn)− f(p)∥+ (1− ταn)∥wn − p∥+ αn∥γf(p)− ηBp∥
≤ (1− αn(τ − bγ))∥xn − p∥+ αn∥γf(p)− ηBp∥

≤ max {∥xn − p∥, ∥γf(p)− ηBp∥
τ − bγ

}.

By induction, it is easy to see that

∥xn − p∥ ≤ max {∥x0 − p∥, ∥γf(p)− ηBp∥
τ − bγ

}, n ≥ 1.
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Hence, {xn} is bounded also are {f(xn)}, and {Bxn}.
By using Lemma 2.6 and inequality (3.3), we obtain

∥xn+1 − p∥2 ≤ ∥αn(γf(xn)− ηBp) + (I − ηαnB)(wn − p)∥2

≤ α2
n∥γf(xn)− ηBp∥2 + (1− ταn)

2∥wn − p∥2

+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥wn − p∥
≤ α2

n∥γf(xn)− ηBp∥2 + (1− ταn)
2∥yn − p∥2

+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥wn − p∥
≤ α2

n∥γf(xn)− ηBp∥2 + (1− ταn)
2∥xn − p∥2

− (1− ταn)
2(1− θn)(θn − β)∥vn − zn∥2

+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥xn − p∥.

Hence,

(1− ταn)
2(1− θn)(θn − β)∥vn − zn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + α2

n∥γf(xn)− ηBp∥2

+2αn(1− ταn)∥γf(xn)− ηBp∥∥xn − p∥.

Since {xn} and {f(xn)} are bounded, then there exists a constant C > 0, we have

(3.6) (1− ταn)
2(1− θn)(θn − β)∥vn − zn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnC.

Next, we prove that xn → x. To see this, let us consider two possible cases.
Case 1. Assume that the sequence {∥xn − p∥} is monotonically decreasing sequence. Then
{∥xn − p∥} must be convergent. Clearly, we have

(3.7) lim
n→∞

[
∥xn − p∥2 − ∥xn+1 − p∥2

]
= 0.

It then implies from (3.6) that

(3.8) lim
n→∞

(1− θn)(θn − β)∥vn − zn∥2 = 0.

Since lim
n→∞

inf(1− θn)(θn − β) > 0, we have

(3.9) lim
n→∞

∥∥∥zn − vn

∥∥∥2 = 0.

Since vn ∈ T1zn, it follows that

(3.10) lim
n→∞

d(zn, T1zn) = 0.

Observing that,

∥yn − zn∥ = ∥θzn + (1− θn)vn − zn∥
= ∥θnzn + (1− θn)vn − θnzn − (1− θn)zn∥
= (1− θn)∥vn − zn∥
≤ ∥vn − zn∥.

Therefore, from (3.9) we get that

(3.11) lim
n→∞

∥zn − yn∥ = 0.
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From (3.1), Lemmas 2.8 and 2.6, it follows that

∥xn+1 − p∥2 ≤ ∥αn(γf(xn)− ηBp) + (I − ηαnBp)(wn − p)∥2

≤ α2
n∥γf(xn)− ηBp∥2 + (1− ταn)

2∥wn − p∥2

+2αn(1− ταn)∥γf(xn)− ηBp∥∥wn − p∥
≤ α2

n∥γf(xn)− ηBp∥2 + (1− ταn)
2∥zn − p∥2

+2αn(1− ταn)∥γf(xn)− ηBp∥∥yn − p∥
= α2

n∥γf(xn)− ηBp∥2 + (1− ταn)
2∥JM

λn
(I − λnA)xn − JM

λn
(I − λnA)p∥2

+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥yn − p∥

≤ α2
n∥γf(xn)− ηBp∥2 + (1− ταn)

2
[
∥xn − p∥2 + a(b− 2α)∥Axn −Ap∥2

]
+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥yn − p∥.

Therefore, we have

(1− ταn)
2a(2α− b)∥Axn −Ap∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2

+2αn(1− ταn)∥γf(xn)− ηBp∥∥yn − p∥
+2αn(1− ταn)∥γf(xn)− ηBp∥∥yn − p∥.

Since, αn → 0 as n → ∞, inequality (3.7) and {xn} is bounded, we obtain

(3.12) lim
n→∞

∥Axn −Ap∥2 = 0.

Since JM
λn

is 1-inverse strongly monotone and (3.1), we have

∥zn − p∥2 = ∥JM
λn
(I − λnA)xn − JM

λn
(I − λnA)p∥2

≤ ⟨zn − p, (I − λnA)xn − (I − λnA)p⟩

=
1

2

[
∥(I − λnA)xn − (I − λnA)p∥2

+∥zn − p∥2 − ∥(I − λnA)xn − (I − λnA)p− (zn − p)∥2
]

≤ 1

2

[
∥xn − p∥2 + ∥zn − p∥2 − ∥xn − zn∥2

+ 2λn⟨zn − p,Axn −Ap⟩ − λn
2∥Axn −Ap∥2

]
.

So, we obtain

∥zn − p∥2 ≤ ∥xn − p∥2 − ∥xn − zn∥2 + 2λn⟨zn − p,Axn −Ap⟩ − λn
2∥Axn −Ap∥2,

and thus

∥xn+1 − p∥2 ≤ ∥αn(γf(xn)− ηBp) + (I − ηαnBp)(wn − p)∥2

≤ α2
n∥γf(xn)− ηBp∥2 + (1− ταn)

2∥zn − p∥2

+2αn(1− ταn)∥γf(xn)− ηBp∥∥wn − p∥
≤ α2

n∥γf(xn)− ηBp∥2 + ∥xn − p∥2 − (1− ταn)
2∥xn − zn∥2

−(1− ταn)
2λn

2∥Axn −Ap∥2

+ 2λn(1− ταn)
2⟨zn − p,Axn −Ap⟩+ 2αn(1− ταn)∥γf(xn)− ηBp∥∥wn − p∥.
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Since, αn → 0 as n → ∞, inequalities (3.7) and (3.12), we obtain

(3.13) lim
n→∞

∥xn − zn∥2 = 0.

From Lemma 2.2, (3.5) and the fact that T2 is quasi-nonexpansive, we have

∥wn − p∥2 = ∥βnyn + (1− βn)un − p∥2

= βn∥yn − p∥2 + (1− βn)∥un − p∥2 − (1− βn)βn∥un − yn∥2

= βn∥yn − p∥2 + (1− βn)H(T2yn, T2p)
2 − (1− βn)βn∥un − yn∥2

≤ ∥xn − p∥2 − (1− βn)βn∥un − yn∥2.

Hence,

∥xn+1 − p∥2 ≤ ∥αn(γf(xn)− ηBp) + (I − ηαnBp)(wn − p)∥2

≤ α2
n∥γf(xn)− ηBp∥2 + (1− αnτ)

2∥wn − p∥2

+2αn(1− αnτ)∥γf(xn)− ηBp∥∥wn − p∥
≤ α2

n∥γf(xn)− ηBp∥2 + (1− αnτ)
2∥xn − p∥2

− (1− αnτ)
2(1− βn)βn∥un − yn∥2

+2αn(1− αnτ)∥γf(xn)− ηBp∥∥wn − p∥.

Thus, we get

(1− αnτ)
2βn(1− βn)∥yn − un∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + α2

n∥γf(xn)− ηBp∥2

+2αn(1− αnτ)∥γf(xn)− ηBp∥∥wn − p∥.(3.14)

Since {xn} is bounded, then there exists a constant B > 0 sucht that

(3.15) (1− αnτ)
2βn(1− βn)∥un − yn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnB.

It then implies from (3.15) and (3.7), that

(3.16) lim
n→∞

βn(1− βn)∥un − yn∥ = 0.

Since lim
n→∞

inf(1− βn)βn > 0, we have

(3.17) lim
n→∞

∥un − yn∥ = 0.

Since un ∈ T2yn, it follows that

(3.18) lim
n→∞

d(yn, T2yn) = 0.

Next, we prove that lim sup
n→+∞

⟨ηBx∗ − γf(x∗), x∗ − xn⟩ ≤ 0. Since H is reflexive and {xn} is

bounded, there exists a subsequence {xnk
} of {xn} such that xnk

converges weakly to x∗∗ in
K and

lim sup
n→+∞

⟨ηBx∗ − γf(x∗), x∗ − xn⟩ = lim
k→+∞

⟨ηBx∗ − γf(x∗), x∗ − xnk
⟩.

From (3.10), (3.18) and the mappings I − T1 and I − T2 are demiclosed, we obtain x∗∗ ∈
Fix(T1)∩Fix(T2). Let us show x∗∗ ∈ S(M,A). Since A be an α-inverse strongly monotone, A
is Lipschitz continuous monotone mapping. It follows from Lemma 2.1 that M+A is maximal
monotone. Let (v, g) ∈ G(M +A), i.e., g−Av ∈ M(v). Since znk

= JM
λnk

(xnk
−λnk

Axnk
), we
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have xnk
− λnk

xnk
∈ (I + λnk

M)znk
, i.e., 1

λnk

(xnk
− znk

− λnk
Axnk

) ∈ M(znk
). By maximal

monotonicity of M +A, we have

⟨v − znk
, g −Av − 1

λnk

(xnk
− znk

− λnk
Axnk

)⟩ ≥ 0

and so

⟨v − znk
, g⟩ ≥ ⟨v − znk

, Av − 1

λnk

(xnk
− znk

− λnk
Axnk

)⟩

= ⟨v − znk
, Av −Aznk

+Aznk
+

1

λnk

(xnk
− znk

− λnk
Axnk

)⟩

≥ ⟨v − znk
, Aznk

−Axnk
⟩+ ⟨v − znk

,
1

λnk

(xnk
− znk

)⟩.

It follows from ∥zn − xn∥ → 0, ∥Azn −Axn∥ → 0 and znk
→ x∗∗ weakly that

lim
k→+∞

⟨v − znk
, g⟩ = ⟨v − x∗∗, g⟩ ≥ 0

and hence x∗∗ ∈ S(M,A). Therefore, x∗∗ ∈ Γ. On other hand, the fact that x∗ solves (3.2),
we then have

lim sup
n→+∞

⟨ηBx∗ − γf(x∗), x∗ − xn⟩ = lim
k→+∞

⟨ηBx∗ − γf(x∗), x∗ − xnk
⟩

= ⟨ηBx∗ − γf(x∗), x∗ − x∗∗⟩ ≤ 0.

Finally, we show that xn → x∗.

∥xn+1 − x∗∥2 = ∥PK(αnγf(xn) + (I − ηαnB)wn)− x∗∥2

≤ ⟨αnγf(xn) + (I − ηαnB)wn − x∗, xn+1 − x∗⟩
= ⟨αnγf(xn) + (I − ηαnB)wn − x∗ − αnγf(x

∗)

+ αnγf(x
∗)− αnηBx∗ + αnηBx∗, xn+1 − x∗⟩

≤
(
αnγ∥f(xn)− f(x∗)∥+ ∥(I − αnηB)(wn − x∗)∥

)
∥xn+1 − x∗∥

+αn⟨ηBx∗ − γf(x∗), x∗ − xn+1⟩
≤ (1− αn(τ − bγ))∥xn − x∗∥∥xn+1 − x∗∥+ αn⟨ηBx∗ − γf(x∗), x∗ − xn+1⟩
≤ (1− αn(τ − bγ))∥xn − x∗∥2 + 2αn⟨ηBx∗ − γf(x∗), x∗ − xn+1⟩.

From Lemma 2.5, its follows that xn → x∗.
Case 2. Assume that the sequence {∥xn − x∗∥} is not monotonically decreasing sequence.
Set Bn = ∥xn − x∗∥2 and τ : N → N be a mapping for all n ≥ n0 (for some n0 large enough)
by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}. We have τ is a non-decreasing sequence such
that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. Let i ∈ N∗, from (3.6), we have

(1− τατ(n))
2(1− θn)(βn − β)∥zτ(n) − vτ(n)∥2 ≤ ατ(n)C.

Furthermore, we have

lim
n→+∞

(1− τατ(n))
2(1− θτ(n))(βτ(n) − β)∥zτ(n) − vτ(n)∥2 = 0.
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Since θτ(n) ∈]β, 1[ and lim
n→∞

inf βτ(n)(1− βτ(n)) > 0, we have

(3.19) lim
n→∞

∥∥∥zτ(n) − vτ(n)

∥∥∥ = 0.

Since vτ(n) ∈ T1zτ(n), it follows that

(3.20) lim
n→∞

d
(
zτ(n), T1zτ(n)

)
= 0.

By a similar argument as in case 1, we can show that xτ(n) is bounded in H and lim sup
τ(n)→+∞

⟨ηBx∗−

γf(x∗), x∗ − xτ(n))⟩ ≤ 0. We have for all n ≥ n0,

0 ≤ ∥xτ(n)+1−x∗∥2−∥xτ(n)−x∗∥2 ≤ ατ(n)[−(τ−bγ)∥xτ(n)−x∗∥2+2⟨ηBx∗−γf(x∗), x∗−xτ(n)+1⟩],
which implies that

∥xτ(n) − x∗∥2 ≤ 2

τ − bγ
⟨ηBx∗ − γf(x∗), x∗ − xτ(n)+1⟩.

Then, we have
lim
n→∞

∥xτ(n) − x∗∥2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Furthermore, for all n ≥ n0, we have Bτ(n) ≤ Bτ(n)+1 if n ̸= τ(n) (that is, n > τ(n)); because
Bj > Bj+1 for τ(n) + 1 ≤ j ≤ n. As consequence, we have for all n ≥ n0,

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof. □

We now apply Theorem 3.1 when multivalued mappings are nonexpansive mappings with
convex-values. In this case demiclosedness assumption is not necessary.

Theorem 3.2. Let H be a real Hilbert space and K be a nonempty, closed convex subset of
H. Let A : K → H be an α-inverse strongly monotone operator and let B : H → H be an k-
strongly monotone and L-Lipschitzian operator. Let f : K → H be an b-Lipschitzian mapping
and M : H → 2H be a maximal monotone mapping such that the domain of M is included in
K. Let T1 : K → CB(K) and T2 : K → CB(K) two multivalued nonexpansive mapping with
convex-values such that Γ := Fix(T1)∩Fix(T2)∩ S(M,A) ̸= ∅ and T1p = T2p = {p} ∀p ∈ Γ.
For given x0 ∈ K, let {xn} be generated by the algorithm:

zn = JM
λn
(I − λnA)xn,

yn = θnzn + (1− θn)vn, vn ∈ T1zn,

wn = βnyn + (1− βn)un, un ∈ T2yn,

xn+1 = PK(αnγf(xn) + (I − ηαnB)wn),

(3.21)

where {λn}, {βn}, {θn} and {αn} be sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.
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(ii) lim
n→∞

inf βn(1− βn) > 0, θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0.

Assume that 0 < η <
2k

L2
, 0 < γb < τ, where τ = η

(
k − L2η

2

)
. Then, the sequences {xn}

and {zn} generated by (3.21) converge strongly to x∗ ∈ Γ, which is the unique solution of the
following variational inequality (3.2).

Proof. Since every multivalued nonexpansive mapping is quasi-nonexpansive and demicon-
tractive, then, the proof follows Lemma 2.4 and Theorem 3.1. □

Now, using the similar arguments as in the proof of Theorem 3.1 and Lemma 2.7, we
obtain the following result by replacing T1, T2 by PT1 , PT1 respectively and removing the
rigid restriction on Γ ( T1p = T2p = {p} ∀p ∈ Γ).

Theorem 3.3. Let H be a real Hilbert space and K be a nonempty, closed convex subset
of H. Let A : K → H be an α-inverse strongly monotone operator and let B : H → H be
an k-strongly monotone and L-Lipschitzian operator. Let f : K → H be an b-Lipschitzian
mapping and M : H → 2H be a maximal monotone mapping such that the domain of M
is included in K. Let T1 : K → P (K) and T2 : K → P (K) two multivalued mappings.
Assume that PT1 is β-demicontractive mapping and PT2 is quasi-nonexpansive mapping such
that Γ := Fix(T1) ∩ Fix(T2) ∩ S(M,A) ̸= ∅. For given x0 ∈ K, let {xn} be generated by the
algorithm: 

zn = JM
λn
(I − λnA)xn,

yn = θnzn + (1− θn)vn, vn ∈ PT1zn,

wn = βnyn + (1− βn)un, un ∈ PT2yn,

xn+1 = PK(αnγf(xn) + (I − ηαnB)wn),

(3.22)

where {λn}, {βn}, {θn} and {αn} be sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

(ii) lim
n→∞

inf βn(1− βn) > 0, θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0,

Assume that 0 < η <
2k

L2
, 0 < γb < τ, where τ = η

(
k − L2η

2

)
and the mappings I − PT1

and I − PT2 are demiclosed at origin. Then, the sequences {xn} and {zn} generated by (3.1)
converge strongly to x∗ ∈ Γ, which is the unique solution of the following variational inequality
(3.2).

4. Application
In this section, we apply our main results for finding a common solution of fixed point

problems with set-valued operators and the composite minimization problem.

Problem 4.1. Let H be a real Hilbert space and K be a nonempty, closed convex subset of
H. We consider the following fixed point problem :

(4.1) find x ∈ K such that x ∈ T1x ∩ T2x,
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where T1 : K → CB(K) be a multivalued β-demicontractive mapping and T2 : K → CB(K)
be a multivalued quasi-nonexpansive mapping. We denote the set of solutions of Problem 4.1
by Ω2.

Problem 4.2. We consider the following the minimization of composite objective function
of the type
(4.2) min

x∈K
F (x) + g(x),

where F : K → R ∪ {+∞} is proper, convex and lower semi-continuous functional and
g : K → R is convex functional.

We denote the set of solutions of Problem 4.2 by Ω1.

Many optimization problems from image processing [3], statistical regression, machine
learning (see, e.g., [31] and the references contained therein), etc can be adapted into the
form of (4.2).
Observe that problem 4.2 is equivalent to find x ∈ K such that
(4.3) 0 ∈ ∂F (x) +∇g(x).

It is well known ∂F (x) is maximal monotone (see, e.g., Minty [16]).

Lemma 4.3. (Baillon and Haddad [2]) Let H be a real Hilbert space, g a continuously
Fréchet differentiable, convex functional on H and ∇g the gradient of f. If ∇g is 1

α -Lipschitz
continuous, then ∇g is α-inverse strongly monotone.

We obtain the following strong convergence results for problems 4.2 and 4.1.

Theorem 4.4. Let H be a real Hilbert space and K be a nonempty, closed convex subset
of H. Let g : K → R a continuously Fréchet differentiable, convex functional on K and ∇g
is 1

α -Lipschitz continuous. Let B : K → H be an k-strongly monotone and L-Lipschitzian
operator. Let f : K → H be an b-Lipschitzian mapping and F : K → R ∪ {+∞} is proper,
convex and lower semi-continuous functional such that D(∂F ) ⊂ K. Let T1 : K → CB(K)
be a multivalued β-demicontractive mapping and T2 : K → CB(K) be a multivalued quasi-
nonexpansive mapping such that Ω1 ∩ Ω2 ̸= ∅ and T1p = T2p = {p} ∀p ∈ Ω1 ∩ Ω2. For given
x0 ∈ K, let {xn} be generated by the algorithm:

zn = J∂F
λn

(I − λn∇g)xn,

yn = θnzn + (1− θn)wn, vn ∈ T1zn,

wn = βnyn + (1− βn)un, un ∈ T2yn,

xn+1 = PK(αnγf(xn) + (I − ηαnB)wn),

(4.4)

where {λn}, {βn}, {θn} and {αn} be sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑
n=0

αn = ∞, λn ∈ [a, b] ⊂
(
0, min{1, 2α}

)
.

(ii) lim
n→∞

inf βn(1− βn) > 0, θn ∈]β, 1[ and lim
n→∞

inf(1− θn)(θn − β) > 0.

Assume that 0 < η <
2k

L2
, 0 < γb < τ, where τ = η

(
k − L2η

2

)
and the mappings I − T1
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and I − T2 are demiclosed at origin. Then, the sequences {xn} and {zn} generated by (4.4)
converge strongly to a common solution of Problem (4.2) and Problem (4.1), which solves the
following variational inequality:

(4.5) ⟨ηBx∗ − γf(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Ω1 ∩ Ω2.

Proof. We set M = ∂F and ∇g = A into Theorem 3.1. Then, the proof follows Theorem
3.1. □

5. Conclusion
The problem of finding a common element of the set of common fixed points of multivalued

demicontractive and quasi-nonexpansive mappings and the set of solutions of variational in-
clusion with set-valued maximal monotone mapping and inverse strongly monotone mappings
has attracted much attention because of its extraordinary utility and broad applicability in
many branches of mathematical science and engineering. Our Theorem 3.1 presents a new
and different algorithm for solving simultaneously variational inclusion problem and fixed
point problem with respectively set-valued maximal monotone mapping and inverse strongly
monotone and multivalued demicontractive and quasi-nonexpansive mappings. Our result
improves and extends the corresponding results of Marino and Xu [14], Xu [28] Moudafi [15]
and many other recent results using forward-backward splitting method and general iterative
algorithm.
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